Hall Ticket Number:

Time: 3 hours

3

Code No.: 144 S

VASAVI COLLEGE OF ENGINEERING (Autonovmous), HYDERABAD M.C.A. I Year II-Semester (Supplementary) Examinations, December - 2016

Data Structures

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 × 2 = 20 Marks)

- 1. An algorithm's behavior pattern or performance profile is measured in terms of the that are consumed while the algorithm is processing. and
- 2. When $m \times n$ (read m by n) designates a matrix with m rows and n columns, Th en a matrix has _ elements and when m = n, we call it as _____
- 3. Explain Stack Abstract data type supporting methods Pop () and Push ().
- 4. An Expression is made up of _____ and
- 5. Explain the need for AVL Trees and write one of its applications.
- 6. Find the number of distinct binary trees with 3 nodes.
- 7. What is the purpose of external sorting?
- 8. Briefly ex plain hash table with an example.
- 9. The graphs G1 with vertices $V(G1) = \{1,2,3,4\}; E(G1) = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$ is directed or undirected explain?
- 10. Any tree consisting solely of edges in G and including all vertices in G is called a _____

Part-B (5 X 10=50 Marks)

11. a) b)	Differentiate between Circular List and Double Linked List. Define a sparse matrix. How do you represent a sparse matrix?	۲5] ا
	Explain "A Mazing Problem".	[:
bj	Write an algorithm for evaluating a postfix expressions using stacks.	[5] [5]
13. a) b)	Explain the purpose of m-way search trees. Prove the following statement: If a complete binary tree with n nodes (i.e., depth= $[log2n] + 1$) is Represented sequentially then for any node with index <i>i</i> , then we have: LCHIL D (<i>i</i>) is at 2 <i>i</i> if 2 <i>i</i> < <i>n</i> . If 2 <i>i</i> > <i>n</i> , then <i>i</i> has no left child.	[4] [6]
14. a) b)	Differe ntiate between Heap and Merge Sort. Show that algorithm QSORT takes $O(n2)$ time when the input file is already in sorted order.	[6] [4]
15. a) b)	Explain "Minimum Cost Spanning Trees" Demonstrate various ways of representing graphs.	[4] [6]
16.a)	Write an algorithm for a binary search.	
b)	Design an algorithm to copy a sparse matrix.	[5]
17. An	swer any two of the following:	[5]
a)	Create a Binary Search Tree for the following data and write the inorder, preorder and postorder forms of the data 23, 5, 17, 21, 7, 22, 19, 2, 9, 10	[5]
	76, 24, 45, 24, 17, 52, 7, 81, 36, 5	[5]
c)	Compare and Contrast Prim's and Kruskals's algorithm.	[5]
	*****	L 1